Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 743
Filtrar
1.
Toxicol Mech Methods ; 34(5): 563-571, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38317456

RESUMEN

BACKGROUND: In a previous study, diethylstilbestrol (DES) was shown to induce oocyte maturation in fish. In the present study, the interaction of DES on goldfish membrane progesterone receptor α (GmPRα) was investigated using a competitive binding assay with radiolabeled steroids. The results indicate that DES exerts its effects on membrane progesterone receptor alpha (mPRα) and induces oocyte maturation through nongenomic steroid mechanisms. This study provides empirical data that demonstrate the binding between DES and GmPRα. METHODS: Binding of DES to GmPRα was achieved by using radiolabeled DES and recombinant GmPRα expressed in culture cells or purified GmPRα proteins that coupled to graphene quantum dots (GQDs). Additionally, the competitive binding of fluorescently labeled progesterone to GmPRα-expressing cells was evaluated. RESULTS: Although significant nonspecific binding of radiolabeled DES to the cell membrane that expresses GmPRα has been observed, specific binding of DES to GmPRα has been successfully identified in the presence of digitonin. Furthermore, the specific binding of DES to GmPRα was confirmed by a binding assay using GQD-GmPRα. The radiolabeled DES was shown to bind to GQD-GmPRα. Additionally, the competition for the binding of fluorescently labeled progesterone to GmPRα-expressing cells was achieved with the DES. CONCLUSIONS: The results of the experiments revealed that DES binds to GmPRα. Thus, it can be concluded that DES induces goldfish oocyte maturation by binding to GmPRα.


Asunto(s)
Dietilestilbestrol , Carpa Dorada , Receptores de Progesterona , Animales , Carpa Dorada/metabolismo , Dietilestilbestrol/toxicidad , Receptores de Progesterona/metabolismo , Membrana Celular/metabolismo , Membrana Celular/efectos de los fármacos , Unión Competitiva , Unión Proteica , Progesterona/metabolismo , Oocitos/metabolismo , Oocitos/efectos de los fármacos , Proteínas de Peces/metabolismo , Proteínas de Peces/genética
2.
Front Endocrinol (Lausanne) ; 14: 1126485, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37854179

RESUMEN

A prevailing challenge when testing chemicals for their potential to cause female reproductive toxicity is the lack of appropriate toxicological test methods. We hypothesized that starting a 28-day in vivo toxicity study already at weaning, instead of in adulthood, would increase the sensitivity to detect endocrine disruptors due to the possibility of including assessment of pubertal onset. We compared the sensitivity of two rat studies using pubertal or adult exposure. We exposed the rats to two well-known human endocrine disruptors, the estrogen diethylstilbestrol (DES; 0.003, 0.012, 0.048 mg/kg bw/day) and the steroid synthesis inhibitor ketoconazole (KTZ; 3, 12, 48 mg/kg bw/day). Specifically, we addressed the impact on established endocrine-sensitive endpoints including day of vaginal opening (VO), estrous cyclicity, weights of reproductive organs and ovarian histology. After 28 days of exposure, starting either at weaning or at 9 weeks of age, DES exposure altered estrous cyclicity, reduced ovary weight as well as number of antral follicles and corpora lutea. By starting exposure at weaning, we could detect advanced day of VO in DES-exposed animals despite a lower body weight. Some endpoints were affected mainly with adult exposure, as DES increased liver weights in adulthood only. For KTZ, no effects were seen on time of VO, but adrenal and liver weights were increased in both exposure scenarios, and adult KTZ exposure also stimulated ovarian follicle growth. At first glance, this would indicate that a pubertal exposure scenario would be preferrable as timing of VO may serve as sensitive indicator of endocrine disruption by estrogenic mode of action. However, a higher sensitivity for other endocrine targets may be seen starting exposure in adulthood. Overall, starting a 28-day study at weaning with inclusion of VO assessment would mainly be recommended for substances showing estrogenic potential e.g., in vitro, whereas for other substances an adult exposure scenario may be recommended.


Asunto(s)
Disruptores Endocrinos , Estrógenos no Esteroides , Humanos , Ratas , Animales , Femenino , Disruptores Endocrinos/toxicidad , Ratas Sprague-Dawley , Reproducción , Dietilestilbestrol/toxicidad
3.
Sci Total Environ ; 905: 166834, 2023 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-37717744

RESUMEN

The herbicide ioxynil (IOX) and the synthetic estrogen diethylstilbestrol (DES) are environmentally relevant contaminants that act as endocrine disruptors (EDCs) and have recently been shown to be cardiovascular disruptors in vertebrates. Mussels, Mytilus coruscus, were exposed to low doses of IOX (0.37, 0.037 and 0.0037 mg/L) and DES (0.27, 0.027 and 0.0027 mg/L) via the water and the effect monitored by generating whole animal transcriptomes and measuring cardiac performance and shell growth. One day after IOX (0.37 and 0.037 mg/L) and DES (0.27 and 0.027 mg/L) exposure heart rate frequency was decreased in both groups and 0.27 mg/L DES significantly reduced heart rate frequency with increasing time of exposure (P < 0.05) and no acclimatization occurred. The functional effects were coupled to significant differential expression of genes of the serotonergic synapse pathway and cardiac-related genes at 0.027 mg/L DES, which suggests that impaired heart function may be due to interference with neuroendocrine regulation and direct cardiac effect genes. Multiple genes related to detoxifying xenobiotic substances were up regulated and genes related to immune function were down regulated in the DES group (vs. control), indicating that detoxification processes were enhanced, and the immune response was depressed. In contrast, IOX had a minor disrupting effect at a molecular level. Of note was a significant suppression (P < 0.05) by DES of shell growth in juveniles and lower doses (< 0.0027 mg/L) had a more severe effect. The shell growth depression in 0.0027 mg/L DES-treated juveniles was not accompanied by abundant differential gene expression, suggesting that the effect of 0.0027 mg/L DES on shell growth may be direct. The results obtained in the present study reveal for the first time that IOX and DES may act as neuroendocrine disrupters with a broad spectrum of effects on cardiac performance and shell growth, and that DES exposure had a much more pronounced effect than IOX in a marine bivalve.


Asunto(s)
Dietilestilbestrol , Mytilus , Animales , Dietilestilbestrol/toxicidad , Dietilestilbestrol/metabolismo , Corazón , Nitrilos/metabolismo , Yodobencenos
4.
Toxicol Sci ; 195(1): 53-60, 2023 08 29.
Artículo en Inglés | MEDLINE | ID: mdl-37471692

RESUMEN

Significant decreases in fertility have been observed over the past 50 years, with female conception rates dropping by 44% and male sperm counts decreasing by over 50%. This dramatic decrease in fertility can be attributed in part to our increasing exposure to endocrine disrupting chemicals (EDCs). Diethylstilbestrol (DES) is an estrogenic EDC that was prescribed to millions of pregnant women between 1940 and 1970 and resulted in detrimental reproductive effects in the offspring that were exposed in utero. Women who were exposed to DES in utero experienced higher rates of infertility, pregnancy complications, and reproductive cancers. Alarmingly, there is evidence to suggest that these effects may persist in the grandchildren and great grandchildren of exposed women. To define the transgenerational reproductive impacts in females following exposure to DES, gestating mice were exposed to DES and the effects monitored in the female descendants across 3 generations. There was a trend for reduced pregnancy rate and fertility index seen across the generations and moreover, the anogenital distance (AGD) was significantly reduced up until the third, unexposed generation. The onset of puberty was also significantly affected, with the timing of vaginal opening occurring significantly earlier in DES descendants. These results indicate a transgenerational effect of DES on multiple reproductive parameters including fertility, timing of puberty, and AGD. These data have significant implications for more than 50 million DES descendants worldwide as well as raising concerns for the ongoing health impacts caused by exposures to other estrogenic EDCs which are pervasive in our environment.


Asunto(s)
Dietilestilbestrol , Efectos Tardíos de la Exposición Prenatal , Embarazo , Femenino , Masculino , Humanos , Ratones , Animales , Dietilestilbestrol/toxicidad , Efectos Tardíos de la Exposición Prenatal/inducido químicamente , Semen , Fertilidad , Reproducción
5.
Environ Res ; 231(Pt 1): 115990, 2023 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-37149030

RESUMEN

BACKGROUND: Prenatal exposure to diethylstilbestrol (DES) is associated with several adverse health outcomes. Animal studies have shown associations between prenatal DES exposure and DNA methylation. OBJECTIVE: The aim of this study was to explore blood DNA methylation in women exposed and unexposed to DES in utero. METHODS: Sixty women (40 exposed and 20 unexposed) in the National Cancer Institute's Combined DES Cohort Study and 199 women (99 exposed and 100 unexposed women) in the Sister Study Cohort were included in this analysis. Within each study, robust linear regression models were used to assess associations between DES exposure and blood DNA methylation. Study-specific associations were combined using fixed-effect meta-analysis with inverse variance weights. Our analysis focused on CpG sites located within nine candidate genes identified in animal models. We further explored whether in utero DES exposure was associated with age acceleration. RESULTS: Blood DNA methylation levels at 10 CpG sites in six of the nine candidate genes were statistically significantly associated with prenatal DES exposure (P < 0.05) in this meta-analysis. Genes included EGF, EMB, EGFR, WNT11, FOS, and TGFB1, which are related to cell proliferation and differentiation. The most statistically significant CpG site was cg19830739 in gene EGF, and it was associated with lower methylation levels in women prenatally exposed to DES compared with those not exposed (P < 0.0001; false discovery rate<0.05). The association between prenatal DES exposure in utero and age acceleration was not statistically significant (P = 0.07 for meta-analyzed results). CONCLUSIONS: There are few opportunities to investigate the effects of prenatal DES exposure. These findings suggest that in utero DES exposure may be associated with differential blood DNA methylation levels, which could mediate the increased risk of several adverse health outcomes observed in exposed women. Our findings need further evaluation using larger data sets.


Asunto(s)
Dietilestilbestrol , Efectos Tardíos de la Exposición Prenatal , Embarazo , Humanos , Femenino , Dietilestilbestrol/toxicidad , Estudios de Cohortes , Metilación de ADN , Efectos Tardíos de la Exposición Prenatal/inducido químicamente , Factor de Crecimiento Epidérmico
6.
Arch Toxicol ; 97(3): 849-863, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36653537

RESUMEN

Exposure to endocrine-disrupting chemicals (EDCs) during development may cause reproductive disorders in women. Although female reproductive endpoints are assessed in rodent toxicity studies, a concern is that typical endpoints are not sensitive enough to detect chemicals of concern to human health. If so, measured endpoints must be improved or new biomarkers of effects included. Herein, we have characterized the dynamic transcriptional landscape of developing rat ovaries exposed to two well-known EDCs, diethylstilbestrol (DES) and ketoconazole (KTZ), by 3' RNA sequencing. Rats were orally exposed from day 7 of gestation until birth, and from postnatal day 1 until days 6, 14 or 22. Three exposure doses for each chemical were used: 3, 6 and 12 µg/kg bw/day of DES; 3, 6, 12 mg/kg bw/day of KTZ. The transcriptome changed dynamically during perinatal development in control ovaries, with 1137 differentially expressed genes (DEGs) partitioned into 3 broad expression patterns. A cross-species deconvolution strategy based on a mouse ovary developmental cell atlas was used to map any changes to ovarian cellularity across the perinatal period to allow for characterization of actual changes to gene transcript levels. A total of 184 DEGs were observed across dose groups and developmental stages in DES-exposed ovaries, and 111 DEGs in KTZ-exposed ovaries across dose groups and developmental stages. Based on our analyses, we have identified new candidate biomarkers for female reproductive toxicity induced by EDC, including Kcne2, Calb2 and Insl3.


Asunto(s)
Disruptores Endocrinos , Canales de Potasio con Entrada de Voltaje , Humanos , Embarazo , Ratones , Femenino , Ratas , Animales , Dietilestilbestrol/toxicidad , Ovario , Disruptores Endocrinos/toxicidad , Cetoconazol , Reproducción , Canales de Potasio con Entrada de Voltaje/farmacología
7.
Sci Total Environ ; 865: 161100, 2023 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-36566849

RESUMEN

The co-occurrence of nanoplastics and other pollutants in the environment has gotten a lot of attention, but information on the biological toxicity of their co-exposure was limited. This study aims to reveal the endocrine disrupting effect and reproductive toxicity of nano-polystyrene (NPS) and diethylstilbestrol (DES) to zebrafish under separate and combined exposure. Results indicated that NPS and DES exposure in isolation reduced the hepatosomatic index and gonadosomatic index, and altered the cell maturity in gonads in both cases. Even worse, the co-exposure of NPS and DES exacerbated the damage to the liver and gonads of fish. The two pollutants individually inhibited the secretion of sex hormones and vitellogenin. The inhibition effect of DES was especially dose-dependent, while NPS had weaker effect than DES. Their combined action on the secretion of sex hormones and vitellogenin exhibited additive effect. However, NPS did not affect the content of thyroid hormones in fish, and also had no significant effect on the reduction of thyroid hormone caused by DES exposure. Furthermore, their co-exposure decreased the cumulative eggs from 1031 to 306, and the spawning number from 12 to 8. The fertilization rate and hatchability rete of eggs were reduced by 30.9% and 40.4%, respectively. The abnormality rate of embryos was 65.0%, significantly higher than in separate DES and NPS groups (55.7% and 30.8% respectively). The abnormal development of offspring was mainly pericardial cyst, spinal curvature, and growth retardation.


Asunto(s)
Dietilestilbestrol , Contaminantes Químicos del Agua , Animales , Dietilestilbestrol/toxicidad , Pez Cebra/fisiología , Poliestirenos/toxicidad , Vitelogeninas , Hormonas Tiroideas , Hormonas Esteroides Gonadales , Contaminantes Químicos del Agua/toxicidad
8.
Chem Biol Interact ; 368: 110243, 2022 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-36374910

RESUMEN

Many environmental pollutants act as endocrine-disrupting compounds by inhibiting human placental 3ß-hydroxysteroid dehydrogenase/Δ5-4 isomerase type 1 (HSD3B1) and aromatase (CYP19A1) activities. In this study, we screened 13 chemicals of environmental concern for their ability to inhibit human HSD3B1 and CYP19A1 by measuring the conversion of pregnenolone to progesterone for HSD3B1 activity and the conversion of testosterone to 17ß-estradiol for CYP19A1 activity in human JEG-3 choriocarcinoma cell microsomes. HSD3B1 had an apparent Km of 0.323 µM and an apparent Vmax of 0.111 nmol/mg/min and CYP19A1 had an apparent Km of 56 nM and an apparent Vmax of 0.177 nmol/mg protein/min. 17ß-Estradiol, bisphenol A, and bisphenol AF competitively inhibited HSD3B1 with Ki values of 0.8, 284.1, and 141.2 µM, respectively, while diethylstilbestrol had a mixed inhibition on human HSD3B1 with the Ki of 8.0 µM. Ketoconazole, bisphenol A, and bisphenol AF noncompetitively inhibited CYP19A1 with Ki values of 10.3, 54.4, and 45.7 µM, respectively, while diethylstilbestrol and zearalenone competitively suppressed CYP19A1 with Ki values of 63.0 and 16.6 µM, respectively. Docking analysis showed that 17ß-estradiol, diethylstilbestrol, bisphenol A, and bisphenol AF bound the steroid binding pocket facing the catalytic residues Y155 and K159 of HSD3B1, and that ketoconazole, bisphenol A, and bisphenol AF bound heme binding pocket while diethylstilbestrol and zearalenone bound the steroid binding site of CYP19A1. In conclusion, 17ß-estradiol, diethylstilbestrol, bisphenol A, and bisphenol AF are human HSD3B1 inhibitors, and ketoconazole, zearalenone, diethylstilbestrol, bisphenol A, and bisphenol AF are human CYP19A1 inhibitors.


Asunto(s)
Inhibidores de la Aromatasa , Contaminantes Ambientales , Complejos Multienzimáticos , Femenino , Humanos , Embarazo , Aromatasa/metabolismo , Inhibidores de la Aromatasa/química , Inhibidores de la Aromatasa/farmacología , Línea Celular Tumoral , Dietilestilbestrol/toxicidad , Estradiol/metabolismo , Cetoconazol/toxicidad , Complejos Multienzimáticos/antagonistas & inhibidores , Zearalenona/toxicidad , Esteroide Isomerasas/antagonistas & inhibidores , Progesterona Reductasa/antagonistas & inhibidores , Fenoles/toxicidad , Contaminantes Ambientales/toxicidad
9.
Sci Total Environ ; 838(Pt 3): 156386, 2022 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-35662599

RESUMEN

Endocrine disruption results from exposure to chemicals that alter the function of the endocrine system in animals. Chronic 60 days of exposure to a low dose (0.1 µM) of ioxynil (IOX) or diethylstilbestrol (DES) via food was used to determine the effects of these chemicals on the physiology of the heart and thyroid follicles in juvenile zebrafish. Immunofluorescence analysis and subsequent 3D morphometric analysis of the zebrafish heart revealed that chronic exposure to IOX induced ventricle deformation and significant volume increase (p < 0.001). DES exposure caused a change in ventricle morphology, but volume was unaffected. Alongside, it was found that DES exposure upregulated endothelial related genes (angptl1b, mhc1lia, mybpc2a, ptgir, notch1b and vwf) involved in vascular homeostasis. Both IOX and DES exposure caused a change in thyroid follicle morphology. Notably, in IOX exposed juveniles, thyroid follicle hypertrophy was observed; and in DES-exposed fish, an enlarged thyroid field was present. In summary, chronic exposure of juvenile zebrafish to IOX and DES affected the heart and the thyroid. Given that both chemicals are able to change the morphology of the thyroid it indicates that they behave as endocrine disruptive chemicals (EDCs). Heart function dynamically changes thyroid morphology, and function and hence it is likely that the observed cardiac effects of IOX and DES are the source of altered thyroid status in these fish.


Asunto(s)
Disruptores Endocrinos , Pez Cebra , Animales , Dietilestilbestrol/toxicidad , Yodobencenos , Nitrilos , Glándula Tiroides , Pez Cebra/fisiología
10.
Artículo en Inglés | MEDLINE | ID: mdl-34639263

RESUMEN

BACKGROUND: Psychiatric disorders in children exposed in utero to diethylstilbestrol (DES) are still debated. We report here the impact of DES prescribed to suppress lactation on the children born after such treatment and their progeny, focusing particularly on psychiatric disorders. CASE PRESENTATION: We report here an informative family in which one or more psychiatric problems (e.g., bipolarity, suicide attempts and suicide, eating disorders) were detected in all children of second-generation (DES-exposed children; n = 9), but for II-2 who died at the age of 26 years due to rupture of a congenital brain aneurysm, and were associated with non-psychiatric disorders (particularly, endometriosis and hypospadias). In the third generation, 10 out of 19 DES-exposed grandchildren had psychiatric disorders (autism spectrum disorder, bipolar disorder, dyspraxia and learning disabilities, mood and behavioral disorders, and eating disorders), often associated with comorbidities. In the fourth generation (7 DES-exposed great-grandchildren, aged between 0 and 18 years), one child had dyspraxia and autism spectrum disorder. The first daughter of the second generation (not exposed to DES) and her children and grandchildren did not have any psychiatric symptoms or comorbidities. CONCLUSIONS: To our knowledge, the high prevalence of psychiatric disorders of various severities in two, and likely three generations, including DES-free pregnancies and DES-exposed pregnancies from the same family, has never been reported. This work strengthens the hypothesis that in utero exposure to DES contributes to the pathogenesis of psychiatric disorders. It also highlights a multigenerational, and possibly transgenerational, effect of DES in neurodevelopment and psychiatric disorders.


Asunto(s)
Trastorno del Espectro Autista , Hipospadias , Trastornos Mentales , Efectos Tardíos de la Exposición Prenatal , Adolescente , Niño , Preescolar , Dietilestilbestrol/toxicidad , Femenino , Humanos , Lactante , Recién Nacido , Masculino , Trastornos Mentales/inducido químicamente , Trastornos Mentales/epidemiología , Embarazo , Efectos Tardíos de la Exposición Prenatal/inducido químicamente
11.
Biomolecules ; 11(7)2021 06 25.
Artículo en Inglés | MEDLINE | ID: mdl-34201983

RESUMEN

Environmental estrogen is a substance that functions as an endocrine hormone in organisms and can cause endocrine system disruption. A typical environmental estrogen, diethylstilbestrol (DES), can affect normal sexual function and organism development. However, even though the effects of different exposure stages of DES on the endocrine system and gonadal development of zebrafish juveniles are unknown, sex determination is strongly influenced by endocrine-disrupting chemicals (EDCs). From 10-90 days post fertilization (dpf), juvenile zebrafish were exposed to DES (100 and 1000 ng/L) in three different stages (initial development stage (IDS), 10-25 dpf; gonadal differentiation stage (GDS), 25-45 dpf and gonadal maturity stage (GMS), 45-60 dpf). Compared with that of IDS and GMS, the growth indicators (body length, body weight, and others) decreased significantly at GDS, and the proportion of zebrafish females exposed to 100 ng/L DES was significantly higher (by 59.65%) than that of the control; in addition, the zebrafish were biased towards female differentiation. The GDS is a critical period for sex differentiation. Our results show that exposure to environmental estrogen during the critical gonadal differentiation period not only affects the development of zebrafish, but also affects the population development.


Asunto(s)
Dietilestilbestrol/toxicidad , Disruptores Endocrinos/toxicidad , Estrógenos no Esteroides/toxicidad , Gónadas/efectos de los fármacos , Diferenciación Sexual/efectos de los fármacos , Animales , Tamaño Corporal/efectos de los fármacos , Tamaño Corporal/fisiología , Femenino , Masculino , Diferenciación Sexual/fisiología , Pez Cebra
12.
Int J Mol Sci ; 22(8)2021 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-33920546

RESUMEN

Xenobiotic exposure during pregnancy and lactation has been linked to perinatal changes in male reproductive outcomes and other endocrine parameters. This pilot study wished to assess whether brief maternal exposure of rats to xenobiotics dibutyl phthalate (DBP) or diethylstilbestrol (DES) might also cause long-term changes in hypothalamic gene expression or in reproductive behavior of the resulting offspring. Time-mated female Sprague Dawley rats were given either DBP (500 mg/kg body weight, every second day from GD14.5 to PND6), DES (125 µg/kg body weight at GD14.5 and GD16.5 only), or vehicle (n = 8-12 per group) and mild endocrine disruption was confirmed by monitoring postnatal anogenital distance. Hypothalamic RNA from male and female offspring at PND10, PND24 and PND90 was analyzed by qRT-PCR for expression of aromatase, oxytocin, vasopressin, ER-alpha, ER-beta, kisspeptin, and GnRH genes. Reproductive behavior was monitored in male and female offspring from PND60 to PND90. Particularly, DES treatment led to significant changes in hypothalamic gene expression, which for the oxytocin gene was still evident at PND90, as well as in sexual behavior. In conclusion, maternal xenobiotic exposure may not only alter endocrine systems in offspring but, by impacting on brain development at a critical time, can have long-term effects on male or female sexual behavior.


Asunto(s)
Dibutil Ftalato/toxicidad , Dietilestilbestrol/toxicidad , Estrógenos no Esteroides/farmacología , Hipotálamo/efectos de los fármacos , Efectos Tardíos de la Exposición Prenatal/metabolismo , Conducta Sexual Animal , Animales , Aromatasa/genética , Aromatasa/metabolismo , Femenino , Hormona Liberadora de Gonadotropina/genética , Hormona Liberadora de Gonadotropina/metabolismo , Hipotálamo/metabolismo , Kisspeptinas/genética , Kisspeptinas/metabolismo , Masculino , Oxitocina/genética , Oxitocina/metabolismo , Plastificantes/toxicidad , Embarazo , Efectos Tardíos de la Exposición Prenatal/fisiopatología , Ratas , Ratas Sprague-Dawley , Receptores de Estrógenos/genética , Receptores de Estrógenos/metabolismo , Transcriptoma , Vasopresinas/genética , Vasopresinas/metabolismo
13.
Reprod Toxicol ; 101: 9-17, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33571642

RESUMEN

Developmental exposure to endocrine disrupting chemicals can have negative consequences for reproductive health in both men and women. Our knowledge about how chemicals can cause adverse health outcomes in females is, however, poorer than our knowledge in males. This is possibly due to lack of sensitive endpoints to evaluate endocrine disruption potential in toxicity studies. To address this shortcoming we carried out rat studies with two well-known human endocrine disruptors, diethylstilbestrol (DES) and ketoconazole (KTZ), and evaluated the sensitivity of a series of endocrine related endpoints. Sprague-Dawley rats were exposed orally from gestational day 7 until postnatal day 22. In a range-finding study, disruption of pregnancy-related endpoints was seen from 0.014 mg/kg bw/day for DES and 14 mg/kg bw/day for KTZ, so doses were adjusted to 0.003; 0.006; and 0.0012 mg/kg bw/day DES and 3; 6; or 12 mg/kg bw/day KTZ in the main study. We observed endocrine disrupting effects on sensitive endpoints in male offspring: both DES and KTZ shortened anogenital distance and increased nipple retention. In female offspring, 0.0012 mg/kg bw/day DES caused slightly longer anogenital distance. We did not see effects on puberty onset when comparing average day of vaginal opening; however, we saw a subtle delay after exposure to both chemicals using a time-curve analysis. No effects on estrous cycle were registered. Our study shows a need for more sensitive test methods to protect the reproductive health of girls and women from harmful chemicals.


Asunto(s)
Dietilestilbestrol/toxicidad , Disruptores Endocrinos/toxicidad , Cetoconazol/toxicidad , Canal Anal/anomalías , Animales , Femenino , Genitales/anomalías , Humanos , Masculino , Intercambio Materno-Fetal , Pezones/anomalías , Embarazo , Ratas Sprague-Dawley , Maduración Sexual , Pruebas de Toxicidad/métodos
14.
Toxicol In Vitro ; 72: 105088, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33429043

RESUMEN

The present study investigated the developmental toxicity of diethylstilbestrol (DES) in the zebrafish embryotoxicity test (ZET). This was done to investigate whether the ZET would better capture the developmental toxicity of DES than the embryonic stem cells test (EST) that was previously shown to underpredict the DES-induced developmental toxicity as compared to in vivo data, potentially because the EST does not capture late events in the developmental process. The ZET results showed DES-induced growth retardation, cumulative mortality and dysmorphisms (i.e. induction of pericardial edema) in zebrafish embryos while the endogenous ERα agonist 17ß-estradiol (E2) showed only growth retardation and cumulative mortality with lower potency compared to DES. Furthermore, the DES-induced pericardial edema formation in zebrafish embryos could be counteracted by co-exposure with ERα antagonist fulvestrant, indicating that the ZET captures the role of ERα in the mode of action underlying the developmental toxicity of DES. Altogether, it is concluded that the ZET differentiates DES from E2 with respect to their developmental toxicity effects, while confirming the role of ERα in mediating the developmental toxicity of DES. Furthermore, comparison to in vivo data revealed that, like the EST, in a quantitative way also the ZET did not capture the relatively high in vivo potency of DES as a developmental toxicant.


Asunto(s)
Carcinógenos/toxicidad , Dietilestilbestrol/toxicidad , Embrión no Mamífero/efectos de los fármacos , Desarrollo Embrionario/efectos de los fármacos , Estradiol/toxicidad , Estrógenos/toxicidad , Teratógenos/toxicidad , Pez Cebra/anomalías , Animales , Embrión no Mamífero/anomalías , Femenino , Cabeza/anomalías , Cardiopatías Congénitas/inducido químicamente , Masculino , Cola (estructura animal)/anomalías , Cola (estructura animal)/efectos de los fármacos , Pruebas de Toxicidad , Saco Vitelino/anomalías , Saco Vitelino/efectos de los fármacos
16.
Differentiation ; 118: 107-131, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33176961

RESUMEN

This paper reviews and provides new observations on the ontogeny of estrogen receptor alpha (ESR1) and estrogen receptor beta (ESR2) in developing human male and female internal and external genitalia. Included in this study are observations on the human fetal uterine tube, the uterotubal junction, uterus, cervix, vagina, penis and clitoris. We also summarize and report on the ontogeny of estrogen receptors in the human fetal prostate, prostatic urethra and epididymis. The ontogeny of ESR1 and ESR2, which spans from 8 to 21 weeks correlates well with the known "window of susceptibility" (7-15 weeks) for diethylstilbestrol (DES)-induced malformations of the human female reproductive tract as determined through examination of DES daughters exposed in utero to this potent estrogen. Our fairly complete mapping of the ontogeny of ESR1 and ESR2 in developing human male and female internal and external genitalia provides a mechanistic framework for further investigation of the role of estrogen in normal development and of abnormalities elicited by exogenous estrogens.


Asunto(s)
Receptor alfa de Estrógeno/genética , Receptor beta de Estrógeno/genética , Estrógenos/metabolismo , Genitales Femeninos/metabolismo , Genitales Masculinos/metabolismo , Dietilestilbestrol/toxicidad , Desarrollo Embrionario/genética , Estrógenos/genética , Femenino , Feto , Genitales Femeninos/anomalías , Genitales Femeninos/crecimiento & desarrollo , Genitales Femeninos/patología , Genitales Masculinos/anomalías , Genitales Masculinos/crecimiento & desarrollo , Genitales Masculinos/patología , Humanos , Masculino
17.
Int J Mol Sci ; 21(11)2020 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-32486162

RESUMEN

Obstructive voiding disorder (OVD) occurs during aging in men and is often, but not always, associated with increased prostate size, due to benign prostatic hyperplasia (BPH), prostatitis, or prostate cancer. Estrogens are known to impact the development of both OVD and prostate diseases, either during early urogenital tract development in fetal-neonatal life or later in adulthood. To examine the potential interaction between developmental and adult estrogen exposure on the adult urogenital tract, male CD-1 mice were perinatally exposed to bisphenol A (BPA), diethylstilbestrol (DES) as a positive control, or vehicle negative control, and in adulthood were treated for 4 months with Silastic capsules containing testosterone and estradiol (T+E2) or empty capsules. Animals exposed to BPA or DES during perinatal development were more likely than negative controls to have urine flow/kidney problems and enlarged bladders, as well as enlarged prostates. OVD in adult T+E2-treated perinatal BPA and DES animals was associated with dorsal prostate hyperplasia and prostatitis. The results demonstrate a relationship between elevated exogenous estrogen levels during urogenital system development and elevated estradiol in adulthood and OVD in male mice. These findings support the two-hit hypothesis for the development of OVD and prostate diseases.


Asunto(s)
Compuestos de Bencidrilo/toxicidad , Dietilestilbestrol/toxicidad , Estradiol/farmacología , Fenoles/toxicidad , Testosterona/farmacología , Obstrucción Uretral/fisiopatología , Animales , Bioensayo , Femenino , Hidronefrosis , Riñón/patología , Masculino , Ratones , Tamaño de los Órganos , Embarazo , Preñez , Efectos Tardíos de la Exposición Prenatal , Próstata/patología , Hiperplasia Prostática/patología , Prostatitis/patología , Vejiga Urinaria/patología
18.
Stem Cell Rev Rep ; 16(5): 893-908, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32592162

RESUMEN

Reproductive health of men has declined in recent past with reduced sperm count and increased incidence of infertility and testicular cancers mainly attributed to endocrine disruption in early life. Present study aims to evaluate whether testicular stem cells including very small embryonic-like stem cells (VSELs) and spermatogonial stem cells (SSCs) get affected by endocrine disruption and result in pathologies in adult life. Effect of treatment on mice pups with estradiol (20 µg on days 5-7) and diethylstilbestrol (DES, 2 µg on days 1-5) was studied on VSELs, SSCs and spermatogonial cells in adult life. Treatment affected spermatogenesis, tubules in Stage VIII & sperm count were reduced along with reduction of meiotic (4n) cells and markers (Prohibitin, Scp3, Protamine). Enumeration of VSELs by flow cytometry (2-6 µm, 7AAD-, LIN-CD45-SCA-1+) and qRT-PCR using specific transcripts for VSELs (Oct-4a, Sox-2, Nanog, Stella, Fragilis), SSCs (tOct-4, Gfra-1, Gpr-125) and early germ cells (Mvh, Dazl) showed several-fold increase but transition from c-Kit negative to c-Kit positive spermatogonial cells was blocked on D100 after treatment. Transcripts specific for apoptosis (Bcl2, Bax) remained unaffected but tumor suppressor (p53) and epigenetic regulator (NP95) transcripts showed marked disruption. 9 of 10 mice exposed to DES showed tumor-like changes. To conclude, endocrine disruption resulted in a tilt towards excessive self-renewal of VSELs (leading to testicular cancer after DES treatment) and blocked differentiation (reduced numbers of c-Kit positive cells, meiosis, sperm count and fertility). Understanding the underlying basis for infertility and cancer initiation from endogenous stem cells through murine modelling will hopefully improve human therapies in future.


Asunto(s)
Envejecimiento/patología , Carcinogénesis/patología , Células Madre Embrionarias/patología , Disruptores Endocrinos/toxicidad , Fertilidad/efectos de los fármacos , Efectos Tardíos de la Exposición Prenatal/patología , Espermatogénesis/efectos de los fármacos , Testículo/patología , Animales , Apoptosis/efectos de los fármacos , Apoptosis/genética , Carcinogénesis/genética , Dietilestilbestrol/toxicidad , Células Madre Embrionarias/efectos de los fármacos , Células Madre Embrionarias/metabolismo , Femenino , Fertilidad/genética , Hormona Folículo Estimulante/genética , Hormona Folículo Estimulante/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Hormona Luteinizante/genética , Hormona Luteinizante/metabolismo , Masculino , Ratones , Modelos Biológicos , Tamaño de los Órganos/efectos de los fármacos , Ploidias , Embarazo , Antígeno Nuclear de Célula en Proliferación/metabolismo , Proteínas Proto-Oncogénicas c-kit/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Factor de Transcripción SOX9/metabolismo , Espermatogénesis/genética
19.
Arch Toxicol ; 94(6): 2081-2095, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32328699

RESUMEN

We previously demonstrated the existence of a balance among steroid hormones, i.e. glucocorticoids and androgens, in RACK1 (receptor for activated C kinase 1) expression and innate immunity activation, which may offer the opportunity to use RACK1 expression as marker to evaluate immunotoxicity of hormone-active substances. Because of the existence of close interconnections between the different steroid hormone receptors with overlapping ligand specificities and signaling pathways, in this study, we wanted to investigate a possible effect of estrogenic active compounds, namely 17ß-estradiol, diethylstilbestrol, and zearalenone, on RACK-1 expression and innate immune responses using THP-1 cells as experimental model. All compounds increased RACK1 transcriptional activity as evaluated by reporter luciferase activity, mRNA expression as assessed by real time-PCR and protein expression by western blot analysis, which paralleled an increase in LPS-induced IL-8, TNF-α production, and CD86 expression, which we previously demonstrated to be dependent on RACK1/PKCß activation. As the induction of RACK1 expression can be blocked by the antagonist G15, induced by the agonist G1 and by the non-cell permeable 17ß-estradiol conjugated with BSA, a role of GPER (previously named GPR30) activation in estrogen-induced RACK1 expression could be demonstrated. In addition, a role of androgen receptor (AR) in RACK1 transcription was also demonstrated by the ability of flutamide, a nonsteroidal antiandrogen, to completely prevent diethylstilbestrol-induced RACK1 transcriptional activity and protein expression. Altogether, our data suggest that RACK1 may represent an interesting target of steroid-active compounds, and its evaluation may offer the opportunity to screen the immunotoxic potential of hormone-active substances.


Asunto(s)
Dietilestilbestrol/toxicidad , Estradiol/toxicidad , Estrógenos/toxicidad , Inmunidad Innata/efectos de los fármacos , Macrófagos/efectos de los fármacos , Monocitos/efectos de los fármacos , Proteínas de Neoplasias/metabolismo , Receptores de Cinasa C Activada/metabolismo , Zearalenona/toxicidad , Citocinas/metabolismo , Disruptores Endocrinos , Humanos , Macrófagos/inmunología , Macrófagos/metabolismo , Monocitos/inmunología , Monocitos/metabolismo , Proteínas de Neoplasias/genética , Prueba de Estudio Conceptual , Receptores de Cinasa C Activada/genética , Receptores Androgénicos/efectos de los fármacos , Receptores Androgénicos/metabolismo , Receptores de Estrógenos/metabolismo , Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/metabolismo , Transducción de Señal , Células THP-1 , Regulación hacia Arriba
20.
J Toxicol Sci ; 45(3): 131-136, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32147636

RESUMEN

Reproductive disorders in birds are the most characteristic effects of DDT contamination of wildlife. Experimental exposure of avian eggs to the estrogenic substance o,p'-DDT causes abnormal development of the reproductive tract (shortening of the left oviduct and aberrant development of the right oviduct) and eggshell thinning in mature birds, but it is still not known how eggshell thinning occurs in the abnormal oviduct. To fill this information gap, we examined the histology of the uterine part of the oviduct in Japanese quail treated in ovo with o,p'-DDT or a synthetic estrogen, diethylstilbestrol (DES), and we performed immunohistochemical staining for the calcium-binding proteins CALB1, SPP1, and TRPV6. Both o,p'-DDT-treated and DES-treated quail had few, and scattered, gland cells in the left uterus, unlike vehicle controls, in which gland cells tightly occupied the lamina propria. The aberrantly developed right uterus retained all the components of the normal left uterus, but in immature form. Immunostaining for CALB1, SPP1, and TRPV6 was greatly reduced by both o,p'-DDT and DES; SPP1 and TRPV6 immunostaining patterns, in particular, differed distinctly from those in the controls. These findings suggest that CALB1, SPP1, and TRPV6 are molecular factors, decreased production of which is responsible for eggshell thinning. Our findings also could contribute to understanding of the eggshell formation mechanism in birds.


Asunto(s)
Proteínas de Unión al Calcio/metabolismo , DDT/toxicidad , Cáscara de Huevo/efectos de los fármacos , Oviductos/efectos de los fármacos , Oviductos/metabolismo , Animales , Coturnix , Dietilestilbestrol/toxicidad , Cáscara de Huevo/patología , Femenino , Oviductos/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...